Local Time of Transient Random Walk on \mathbb{Z}_{+}

Hua-Ming WANG(Anhui Normal University)

18th Workshop on Markov Processes and Related Topics Tianjin University

30th July - 2nd August, 2023

Contents

(1) The Model and Background
(2) Questions
(3) The Main Results

4 Ideas of Proofs

The Model

$(1,1)$ Spatially Inhomogeneous Random Walks

$$
\begin{aligned}
& P\left(X_{k+1}=1 \mid X_{k}=0\right)=1, \\
& P\left(X_{k+1}=n+1 \mid X_{k}=n\right)=p_{n}, \\
& P\left(X_{k+1}=n-1 \mid X_{k}=n\right)=q_{n},
\end{aligned}
$$

where $\forall n \geq 1, p_{n}, q_{n}>0, p_{n}+q_{n}=1$.

Transience criterion

Let $\rho_{n}=q_{n} / p_{n}, n \geq 1$. Then the chain X is transient if and only if $\sum_{k=1}^{\infty} \rho_{1} \cdots \rho_{k}<\infty$.

Cutpoints and Strong Cutpoints

\diamond Definition(Local Time)
For $x \in \mathbb{Z}_{+}$, we call $\xi(x)=\sum_{k=0}^{\infty} 1_{\left\{X_{k}=x\right\}}$ the local time of the chain X at x.
\diamond Definition(Cutpoint)
A site R is a cutpoint if, for some k, we have $X_{k}=R$, and $\left\{X_{0}, X_{1}, \ldots, X_{k}\right\}$ is disjoint from $\left\{X_{k+1}, X_{k+2}, \ldots\right\}$, i.e., $X_{i} \leq$ $R, i=0,1, \ldots, k ; X_{k}=R$; and $X_{i}>R, i=k+1, k+2, \ldots$.
\diamond Definition(Strong Cutpoint)
A site R is a strong cutpoint if, for some k, we have $X_{k}=$ $R, X_{i}<R, i=0,1, \ldots, k-1$, and $X_{i}>R, i=k+1, k+2, \ldots$.
\bigcirc Remark. A site R is a strong cutpoint iff $\xi(R)=1$.

\bigcirc For recurrent random walk, there is no cutpoint.
\bigcirc For transient simple(spatially homogeneous) random walk, there must be infinitely many cutpoints.
\bigcirc Intuitively, the faster the walk runs, the more cutpoints it has.
\bigcirc Is it possible that the walk is transient, but not fast enough, so that there are only finitely many cutpoints?
\diamond For the above model, James, Lyons, Peres (2008) give a example which shows that the walk is transient but has only finitely many cutpoints.
\diamond Csáki, Földes, Révész (2010) give a criterion for the finiteness of the number of cutpoints.
E. Csáki, A. Földes, P. Révész, On the number of cutpoints of transient nearest neighbor random walk on the line, J. Theoret. Probab. 23 (2) (2010) 624-638.
R. N. James, R. Lyons, Y. Peres, A transient Markov chain with finitely many cutpoints, In: IMS Collections Probability and Statistics: Essays in Honor of David A. Freedman, 2 (2008) 24-29, Institute of Mathematical Statistics.

Set for $n \in \mathbb{Z}_{+}$,

$$
\rho_{n}=\frac{q_{n}}{p_{n}} \text { and } D(n)=1+\sum_{j=1}^{\infty} \rho_{n+1} \cdots \rho_{n+j} .
$$

Theorem(Csáki, Földes, Révész (2010))

Suppose $0 \leq p_{i}<1 / 2, i \geq 1$.

- If

$$
\sum_{n=1}^{\infty} \frac{1}{D(n) \log n}<\infty
$$

then almost surely, $\left\{X_{n}\right\}$ has finitely many cutpoints;

- If $\exists \delta>0$ such that $D(n) \leq \delta n \log n$ for n large enough and

$$
\sum_{n=1}^{\infty} \frac{1}{D(n) \log n}=\infty
$$

then almost surely, $\left\{X_{n}\right\}$ has infinitely many strong cutpoints.

Some Questions

Csáki, Földes, Révész proposed the following open problem:
\diamond Open problem(Csáki, Földes, Révész (2010)). Consider a spatially inhomogeneous random walk. For $x \in \mathbb{Z}_{+}$, let $\xi(x)$ be the local time of the walk at x. For any positive integer a, is there a criterion to determine whether the cardinality of the set $C:=\left\{x \in \mathbb{Z}^{+}: \xi(x)=a\right\}$ is finite or infinity?

Beside the above open problem, naturally, one may ask the following question:
\diamond Question. Whenever there are infinitely many (strong) cutpoints, how many cutpoints are there in $[0, n]$?

$$
a=8 \text { and } \xi(2)=a,
$$

the walk hits the site 2 exactly 8 times.

The Main Results

For any $a \in \mathbb{Z}_{+}$, set $C:=\left\{x \in \mathbb{Z}^{+}: \xi(x)=a\right\}$.

Theorem 1

Suppose that ρ_{k} is increasing in $k>N_{0}$ for some $N_{0}>0$ and $\rho_{k} \rightarrow 1$ as $k \rightarrow \infty$. If

$$
\sum_{n=2}^{\infty} \frac{1}{D(n) \log n}<\infty
$$

then $|C|<\infty$ almost surely; if $D(n) \leq \delta n \log n, n \geq n_{0}$ for some $n_{0}>0$ and $\delta>0$ and

$$
\sum_{n=2}^{\infty} \frac{1}{D(n) \log n}=\infty
$$

then $|C|=\infty$ almost surely.
Theorem 1 gives an answer to the above mentioned open problem proposed by Csáki, Földes, Révész (2010).

A Concrete Example

Fix $\beta \in \mathbb{R}$. Clearly there exists $n_{1}>0$ such that $\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n(\log \log n)^{\beta}}\right) \in$ $(0,1 / 2)$ for all $n>n_{1}$. For $n \geq 1$ set

$$
r_{n}= \begin{cases}\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n(\log \log n)^{\beta}}\right), & \text { if } n \geq n_{1}, \tag{1}\\ r_{n_{1}}, & \text { if } n<n_{1} .\end{cases}
$$

Lemma 1

For $n \geq 1$ set $p_{n}=\frac{1}{2}+r_{n}$. Then $D(n) \sim n(\log \log n)^{\beta}$ as $n \rightarrow \infty$.

Corollary 1

For $n \geq 1$ set $p_{n}=\frac{1}{2}+r_{n}$. Then

$$
\begin{aligned}
& \beta>1 \Rightarrow|C|<\infty \text { almost surely; } \\
& \beta \leq 1 \Rightarrow|C|=\infty \text { almost surely }
\end{aligned}
$$

Number of Strong Cutpoints in $[0, n]$

Proposition 1

For $n \geq 1$ let r_{n} be the one in (1) and set $p_{n}=\frac{1}{2}+r_{n}$. Then

$$
\lim _{n \rightarrow \infty} \frac{2(\log \log n)^{\beta}}{\log n} E|C \cap[0, n]|=1
$$

Inspired by Proposition 1, one may expect that

$$
\frac{2(\log \log n)^{\beta}}{\log n}|C \cap[0, n]| \rightarrow 1
$$

almost surely as $n \rightarrow \infty$. However this is not the case. The main reason is that the events $\{x \in C\}, x=1,2, \ldots, n$ are not independent. We have the following theorem.

Theorem 2

Suppose that $a=1$. Let $r_{1}=1 / 4$ and $r_{n}=\frac{1}{2 n}, n \geq 2$. Set $p_{n}=\frac{1}{2}+r_{n}$, for $n \geq 1$. Then

$$
\lim _{n \rightarrow \infty} \frac{2|C \cap[0, n]|}{\log n} \stackrel{\mathcal{D}}{=} S
$$

where S is an exponentially distributed random variable with $P(S>t)=e^{-t}, t>0$.

As remarked above, when $a=1$, the set C is the collection of strong cutpoints. For cutpoints defined above, similar result holds. Let \tilde{C} be the collection of cutpoints. Under the conditions of Theorem 2, we have

$$
\lim _{n \rightarrow \infty} \frac{|\tilde{C} \cap[0, n]|}{\log n} \stackrel{\mathcal{D}}{=} S
$$

Ideas of Proofs

Idea of the Proof of Theorem 1
For any $a \in \mathbb{Z}_{+}$, set $C:=\left\{x \in \mathbb{Z}^{+}: \xi(x)=a\right\}$.

Theorem 1

Suppose that ρ_{k} is increasing in $k>N_{0}$ for some $N_{0}>0$ and $\rho_{k} \rightarrow 1$ as $k \rightarrow \infty$. If

$$
\sum_{n=2}^{\infty} \frac{1}{D(n) \log n}<\infty
$$

then $|C|<\infty$ almost surely; if $D(n) \leq \delta n \log n, n \geq n_{0}$ for some $n_{0}>0$ and $\delta>0$ and

$$
\sum_{n=2}^{\infty} \frac{1}{D(n) \log n}=\infty
$$

then $|C|=\infty$ almost surely.

Step 1: Distribution of Local Times

For $n>m \geq 0$, write

$$
D(m, n):=1+\sum_{j=1}^{n-m-1} \rho_{m+1} \cdots \rho_{m+j}, D(m):=\lim _{n \rightarrow \infty} D(m, n)
$$

Lemma 2

We have for $x \geq 0$ and $a \geq 1$,

$$
P(\xi(x)=a)=\frac{p_{x}}{D(x)}\left(1-\frac{p_{x}}{D(x)}\right)^{a-1}
$$

and for $m \geq 2,1 \leq j_{1}<j_{2}<\ldots<j_{m}$,

$$
\begin{aligned}
P\left(\xi\left(j_{1}\right)\right. & \left.=1, \cdots, \xi\left(j_{m}\right)=1\right) \\
& =\frac{p_{j_{1}} p_{j_{2}} \cdots p_{j_{m}}}{D\left(j_{1}, j_{2}\right) D\left(j_{2}, j_{3}\right) \cdots D\left(j_{m-1}, j_{m}\right) D\left(j_{m}\right)} .
\end{aligned}
$$

Step 2: Cardinalities of Certain Simplexes in \mathbb{Z}_{+}^{j}
For positive integers $a \geq j \geq i \geq 1$ set

$$
\begin{aligned}
& S(a, j)=\left\{\left(a_{1}, \ldots, a_{j}\right): a_{k} \in \mathbb{Z}_{+} /\{0\}, j \geq k \geq 1, \sum_{k=1}^{j} a_{k}=a\right\} \\
& \tilde{S}(a, j)=\left\{\left(a_{1}, \ldots, a_{j}\right): a_{k} \in \mathbb{Z}_{+}, j \geq k \geq 1, a_{j} \geq 1, \sum_{k=1}^{j} a_{k}=a\right\} \\
& \tilde{S}_{i}(a, j)=\left\{\left(a_{1}, \ldots, a_{j}\right) \in \tilde{S}(a, j): \sum_{k=1}^{j} 1_{a_{k} \neq 0}=i\right\}
\end{aligned}
$$

Lemma 3

For $a \geq j \geq i \geq 1$, we have $|S(a, j)|=\binom{a-1}{j-1}$ and $\left|\tilde{S}_{i}(a, j)\right|=$ $\binom{j-1}{i-1}\binom{a-1}{i-1}$.

Step 3: Joint Probability of $\{x \in C\}$ and $\{y \in C\}$
Based on Lemma 2 and Lemma 3, we have

Lemma 4

For $1 \leq x<y<\infty$ and $a \geq 1$, we have

$$
\begin{aligned}
& P(\xi(x)=a, \xi(y)=a) \\
&=\sum_{i=1}^{a}\binom{a-1}{i-1}^{2}\left(\frac{p_{x}}{D(x, y)}\right)^{i}\left(1-\frac{p_{x}}{D(x, y)}\right)^{a-i} \\
& \times\left(q_{y}\left(1-\frac{D(x, y-1)}{D(x, y)}\right)\right)^{i-1} \\
& \times\left(q_{y} \frac{D(x, y-1)}{D(x, y)}+p_{y}\left(1-\frac{1}{D(y)}\right)\right)^{a-i} \frac{p_{y}}{D(y)} .
\end{aligned}
$$

Step 4: Dependence of $\{x \in C\}$ and $\{y \in C\}$
Based on Lemma 4, we can show

Proposition 2

For each $\varepsilon>0$, there exist $N>0$ and $M>0$ such that

$$
1-\varepsilon \leq \frac{D(x, x+y)}{D(x)} \frac{P\left(\xi(x)=a, \xi_{x+y}=a\right)}{P(\xi(x)=a) P(\xi(x+y)=a)} \leq 1+\varepsilon,
$$

for all $x>N, y>M$.
Based on Lemma 2 and Proposition 2, roughly speaking, Theorem 1 can be proved by Borel-Cantelli lemma.

Idea of the Proof of Theorem 2

Theorem 2

Suppose that $a=1$. Let $r_{1}=1 / 4$ and $r_{n}=\frac{1}{2 n}, n \geq 2$. Set $p_{n}=\frac{1}{2}+r_{n}$, for $n \geq 1$. Then

$$
\lim _{n \rightarrow \infty} \frac{2|C \cap[0, n]|}{\log n} \stackrel{\mathcal{D}}{=} S
$$

where S is an exponentially distributed random variable with $P(S>t)=e^{-t}, t>0$.

Theorem 2 is proved by an moment method. The key step is to show that the moments of $2|C \cap[0, n]|$ converge to those of exponential distribution, which is very complicated even if we consider here only the case $a=1$ and $\beta=0$.

Convergence of the Moments

Lemma 5

Under the conditions of Theorem 2, we have

$$
\lim _{n \rightarrow \infty} \frac{E\left(|C \cap[0, n]|^{k}\right)}{(\log n)^{k}}=\frac{2^{k}}{k!}, k \geq 1
$$

Sketch of Proof.
For $k \geq 1$, we set $\eta_{k}=\left\{\begin{array}{c}1, k \in C \\ 0 k \notin C\end{array}\right.$. Then $|C \cap[0, n]|=\sum_{k=0}^{n} \eta_{k}$.
Let $S(a, j)$ be the above defined simplex in \mathbb{Z}_{+}^{j}. Then

$$
\begin{aligned}
& E|C \cap[0, n]|^{k}=E\left(\left(\sum_{j=0}^{n} \eta_{j}\right)^{k}\right) \\
&=\sum_{1 \leq j_{1}, j_{2}, \ldots, j_{k} \leq n} E\left(\eta_{j_{1}} \eta_{j_{2}} \cdots \eta_{j_{k}}\right) \\
&=\sum_{m=1}^{k} \sum_{\substack{l_{1}+\cdots+l_{m}=k, l_{i} \geq 1, i=1, \ldots, m}} m!\sum_{0 \leq j_{1}<\ldots<j_{m} \leq n} E\left(\eta_{j_{1}}^{l_{1}} \cdots \eta_{j_{m}}^{l_{m}}\right) \\
&=\sum_{m=1}^{k} \sum_{\left(l_{1}, \ldots, l_{m}\right) \in S(k, m)} m!\sum_{0 \leq j_{1}<\ldots<j_{m} \leq n} E\left(\eta_{j_{1}}^{l_{1}} \cdots \eta_{j_{m}}^{l_{m}}\right) .
\end{aligned}
$$

Using the above Lemma 2(local time distribution) and Lemma 3 (Combinatorial result), we get

$$
\begin{aligned}
& E|C \cap[0, n]|^{k}=\sum_{m=1}^{k}\binom{k-1}{m-1} m!\sum_{0 \leq j_{1}<\ldots<j_{m} \leq n} E\left(\eta_{j_{1}} \cdots \eta_{j_{m}}\right) \\
& =\sum_{m=1}^{k}\binom{k-1}{m-1} m!\sum_{0 \leq j_{1}<\ldots<j_{m} \leq n} \frac{p_{j_{1}} p_{j_{2}} \cdots p_{j_{m}}}{\prod_{s=1}^{m-1} D\left(j_{s}, j_{s+1}\right) D\left(j_{m}\right)} \\
& \quad=\sum_{m=1}^{k}\binom{k-1}{m-1} m!G(n, m) .
\end{aligned}
$$

What is left for us to compute is

$$
G(n, m):=\sum_{0 \leq j_{1}<\ldots<j_{m} \leq n} \frac{p_{j_{1}} p_{j_{2}} \cdots p_{j_{m}}}{\prod_{s=1}^{m-1} D\left(j_{s}, j_{s+1}\right) D\left(j_{m}\right)} .
$$

We need the follow estimations of $D(i)$ and $D(i, j)$, and another combinatorial result.

Lemma 6

Under the conditions of Theorem 2, there exists a number $i_{0}>0$ such that

$$
\begin{gathered}
(1-\varepsilon) \frac{i(j-i)}{j} \leq D(i, j) \leq(1+\varepsilon) \frac{i(j-i)}{j}, j>i \geq i_{0} \\
(1-\varepsilon) i \leq D(i) \leq(1+\varepsilon) i, i \geq i_{0} .
\end{gathered}
$$

Lemma 7

Fix $k \geq 1, l \geq 1$. We have

$$
\lim _{n \rightarrow \infty} \frac{1}{(\log n)^{k}} \sum_{l \leq j_{1}<\ldots<j_{k} \leq n} \frac{1}{j_{1}\left(j_{2}-j_{1}\right) \cdots\left(j_{k}-j_{k-1}\right)}=1
$$

With the help of Lemma 6 and Lemma 7, we can show

$$
\lim _{n \rightarrow \infty} \frac{G(n, m)}{(\log n)^{m}}=\frac{1}{2^{m}}
$$

which leads to

$$
\lim _{n \rightarrow \infty} \frac{E|C \cap[0, n]|^{k}}{(\log n)^{k}}=\frac{k!}{2^{k}} .
$$

References

嗇 K．L．Chung，Markov chains with stationary transition prob－ abilities，2nd ed．Springer，New York， 1967.
嗇 E．Csáki，A．Földes，P．Révész，Transient nearest neighbor random walk on the line，J．Theoret．Probab． 22 （1）（2009） 100－122．
䍰 E．Csáki，A．Földes，P．Révész，Transient nearest neighbor random walk and Bessel process，J．Theoret．Probab． 22 （4） （2009）992－1009．
E－Csáki，A．Földes，P．Révész，On the number of cutpoints of transient nearest neighbor random walk on the line，J． Theoret．Probab． 23 （2）（2010）624－638．
围 N．James，R．Lyons，Y．Peres，A transient Markov chain with finitely many cutpoints，In：IMS Collections Probability and Statistics：Essays in Honor of David A．Freedman， 2 （2008） 24－29，Institute of Mathematical Statistics．

References

葍 J．Lamperti，Criteria for the recurrence or transience of s－ tochastic processes．I，J．Math．Anal．Appl． 1 （3－4）（1960） 314－330．
目 J．Lamperti，A new class of probability limit theorems，J． Math．Mech． 11 （5）（1962）749－772．
图 J．Lamperti，Criteria for stochastic processes II：Passage－time moments，J．Math．Anal．Appl． 7 （1）（1963）127－145．

圊 V．V．Petrov，A generalization of the Borel－Cantelli lemma， Statist．Probab．Lett． 67 （3）（2004）233－239．
目 A．N．Shiryaev，Probability，2nd ed．Springer－Verlag， Berlin／Heidelberg／New York， 1996.

Acknowledgements

非常感謝

hmking＠ahnu．edu．cn

