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The Model

♦ (1,1) Spatially Inhomogeneous Random Walks

P (Xk+1 = 1|Xk = 0) = 1,

P (Xk+1 = n+ 1|Xk = n) = pn,

P (Xk+1 = n− 1|Xk = n) = qn,

where ∀n ≥ 1, pn, qn > 0, pn + qn = 1.

Transience criterion

Let ρn = qn/pn, n ≥ 1. Then the chain X is transient if and only
if
∑∞

k=1 ρ1 · · · ρk <∞.



Cutpoints and Strong Cutpoints

♦ Definition(Local Time)

For x ∈ Z+, we call ξ(x) =
∑∞

k=0 1{Xk=x} the local time of

the chain X at x.

♦ Definition(Cutpoint)

A site R is a cutpoint if, for some k, we have Xk = R, and

{X0, X1, ..., Xk} is disjoint from {Xk+1, Xk+2, ...}, i.e., Xi ≤
R, i = 0, 1, ..., k; Xk = R; and Xi > R, i = k + 1, k + 2, ....

♦ Definition(Strong Cutpoint)

A site R is a strong cutpoint if, for some k, we have Xk =

R,Xi < R, i = 0, 1, ..., k− 1, and Xi > R, i = k+ 1, k+ 2, ....

♥ Remark. A site R is a strong cutpoint iff ξ(R) = 1.
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♥ For recurrent random walk, there is no cutpoint.

♥ For transient simple(spatially homogeneous) random walk,
there must be infinitely many cutpoints.

♥ Intuitively, the faster the walk runs, the more cutpoints
it has.

♥ Is it possible that the walk is transient, but not fast enough,
so that there are only finitely many cutpoints?



♦ For the above model, James, Lyons, Peres (2008) give a ex-
ample which shows that the walk is transient but has only
finitely many cutpoints.

♦ Csáki, Földes, Révész (2010) give a criterion for the finite-
ness of the number of cutpoints.

E. Csáki, A. Földes, P. Révész, On the number of cutpoints of transient
nearest neighbor random walk on the line, J. Theoret. Probab. 23 (2)
(2010) 624-638.

N. James, R. Lyons, Y. Peres, A transient Markov chain with finitely
many cutpoints, In: IMS Collections Probability and Statistics: Essays
in Honor of David A. Freedman, 2 (2008) 24-29, Institute of Mathemat-
ical Statistics.



Set for n ∈ Z+,

ρn =
qn
pn

and D(n) = 1 +

∞∑
j=1

ρn+1 · · · ρn+j .

Theorem(Csáki, Földes, Révész (2010))

Suppose 0 ≤ pi < 1/2, i ≥ 1.

If ∞∑
n=1

1

D(n) log n
<∞,

then almost surely, {Xn} has finitely many cutpoints;

If ∃δ > 0 such that D(n) ≤ δn log n for n large enough and
∞∑
n=1

1

D(n) log n
=∞,

then almost surely, {Xn} has infinitely many strong cut-
points.



Some Questions

Csáki, Földes, Révész proposed the following open problem:

♦ Open problem(Csáki, Földes, Révész (2010)). Consider a
spatially inhomogeneous random walk. For x ∈ Z+, let ξ(x)
be the local time of the walk at x. For any positive integer
a, is there a criterion to determine whether the cardinality
of the set C := {x ∈ Z+ : ξ(x) = a} is finite or infinity?

Beside the above open problem, naturally, one may ask the fol-
lowing question:

♦ Question. Whenever there are infinitely many (strong) cut-
points, how many cutpoints are there in [0, n]?
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a = 8 and ξ(2) = a,
the walk hits the site 2 exactly 8 times.



The Main Results

For any a ∈ Z+, set C := {x ∈ Z+ : ξ(x) = a}.

Theorem 1

Suppose that ρk is increasing in k > N0 for some N0 > 0 and
ρk → 1 as k →∞. If ∞∑

n=2

1

D(n) log n
<∞,

then |C| <∞ almost surely; if D(n) ≤ δn log n, n ≥ n0 for some
n0 > 0 and δ > 0 and ∞∑

n=2

1

D(n) log n
=∞,

then |C| =∞ almost surely.

Theorem 1 gives an answer to the above mentioned open problem
proposed by Csáki, Földes, Révész (2010).



A Concrete Example

Fix β ∈ R. Clearly there exists n1 > 0 such that 1
4

(
1
n + 1

n(log logn)β

)
∈

(0, 1/2) for all n > n1. For n ≥ 1 set

rn =

{
1
4

(
1
n + 1

n(log logn)β

)
, if n ≥ n1,

rn1 , if n < n1.
(1)

Lemma 1

For n ≥ 1 set pn = 1
2 + rn. Then D(n) ∼ n(log log n)β as n→∞.

Corollary 1

For n ≥ 1 set pn = 1
2 + rn. Then

β > 1⇒ |C| <∞ almost surely;

β ≤ 1⇒ |C| =∞ almost surely.



Number of Strong Cutpoints in [0, n]

Proposition 1

For n ≥ 1 let rn be the one in (1) and set pn = 1
2 + rn. Then

lim
n→∞

2(log log n)β

log n
E |C ∩ [0, n]| = 1.

Inspired by Proposition 1, one may expect that

2(log logn)β

log n
|C ∩ [0, n]| → 1

almost surely as n → ∞. However this is not the case. The
main reason is that the events {x ∈ C}, x = 1, 2, ..., n are not
independent. We have the following theorem.



Theorem 2

Suppose that a = 1. Let r1 = 1/4 and rn = 1
2n , n ≥ 2. Set

pn = 1
2 + rn, for n ≥ 1. Then

lim
n→∞

2 |C ∩ [0, n]|
log n

D
= S

where S is an exponentially distributed random variable with
P (S > t) = e−t, t > 0.

As remarked above, when a = 1, the set C is the collection
of strong cutpoints. For cutpoints defined above, similar result
holds. Let C̃ be the collection of cutpoints. Under the condi-
tions of Theorem 2, we have

lim
n→∞

|C̃ ∩ [0, n]|
log n

D
= S.



Ideas of Proofs

Idea of the Proof of Theorem 1

For any a ∈ Z+, set C := {x ∈ Z+ : ξ(x) = a}.

Theorem 1

Suppose that ρk is increasing in k > N0 for some N0 > 0 and
ρk → 1 as k →∞. If

∞∑
n=2

1

D(n) log n
<∞,

then |C| <∞ almost surely; if D(n) ≤ δn log n, n ≥ n0 for some
n0 > 0 and δ > 0 and

∞∑
n=2

1

D(n) log n
=∞,

then |C| =∞ almost surely.



Step 1: Distribution of Local Times

For n > m ≥ 0, write

D(m,n) := 1 +

n−m−1∑
j=1

ρm+1 · · · ρm+j , D(m) := lim
n→∞

D(m,n).

Lemma 2

We have for x ≥ 0 and a ≥ 1,

P (ξ(x) = a) =
px
D(x)

(
1− px

D(x)

)a−1
,

and for m ≥ 2, 1 ≤ j1 < j2 < ... < jm,

P (ξ(j1) = 1, · · · , ξ(jm) = 1)

=
pj1pj2 · · · pjm

D(j1, j2)D(j2, j3) · · ·D(jm−1, jm)D(jm)
.



Step 2: Cardinalities of Certain Simplexes in Zj+
For positive integers a ≥ j ≥ i ≥ 1 set

S(a, j) =

{
(a1, ..., aj) : ak ∈ Z+/{0}, j ≥ k ≥ 1,

j∑
k=1

ak = a

}
,

S̃(a, j) =

{
(a1, ..., aj) : ak ∈ Z+, j ≥ k ≥ 1, aj ≥ 1,

j∑
k=1

ak = a

}
,

S̃i(a, j) =

{
(a1, ..., aj) ∈ S̃(a, j) :

j∑
k=1

1ak 6=0 = i

}
.

Lemma 3

For a ≥ j ≥ i ≥ 1, we have |S(a, j)| =
(
a−1
j−1
)

and |S̃i(a, j)| =(
j−1
i−1
)(
a−1
i−1
)
.



Step 3: Joint Probability of {x ∈ C} and {y ∈ C}
Based on Lemma 2 and Lemma 3, we have

Lemma 4

For 1 ≤ x < y <∞ and a ≥ 1, we have

P (ξ(x) = a, ξ(y) = a)

=

a∑
i=1

(
a− 1

i− 1

)2( px
D(x, y)

)i(
1− px

D(x, y)

)a−i
×
(
qy

(
1− D(x, y − 1)

D(x, y)

))i−1
×
(
qy
D(x, y − 1)

D(x, y)
+ py

(
1− 1

D(y)

))a−i py
D(y)

.



Step 4: Dependence of {x ∈ C} and {y ∈ C}
Based on Lemma 4, we can show

Proposition 2

For each ε > 0, there exist N > 0 and M > 0 such that

1− ε ≤D(x, x+ y)

D(x)

P (ξ(x) = a, ξx+y = a)

P (ξ(x) = a)P (ξ(x+ y) = a)
≤ 1 + ε,

for all x > N, y > M.

Based on Lemma 2 and Proposition 2, roughly speaking, Theo-
rem 1 can be proved by Borel-Cantelli lemma. 2



Idea of the Proof of Theorem 2

Theorem 2

Suppose that a = 1. Let r1 = 1/4 and rn = 1
2n , n ≥ 2. Set

pn = 1
2 + rn, for n ≥ 1. Then

lim
n→∞

2 |C ∩ [0, n]|
log n

D
= S

where S is an exponentially distributed random variable with
P (S > t) = e−t, t > 0.

Theorem 2 is proved by an moment method. The key step
is to show that the moments of 2 |C ∩ [0, n]| converge to those
of exponential distribution, which is very complicated even if we
consider here only the case a = 1 and β = 0.



Convergence of the Moments

Lemma 5

Under the conditions of Theorem 2, we have

lim
n→∞

E(|C ∩ [0, n]|k)
(log n)k

=
2k

k!
, k ≥ 1.

Sketch of Proof.

For k ≥ 1, we set ηk =

{
1, k ∈ C
0 k /∈ C . Then |C ∩ [0, n]| =

∑n
k=0 ηk.

Let S(a, j) be the above defined simplex in Zj+. Then



E|C∩[0, n]|k = E


 n∑
j=0

ηj

k


=
∑

1≤j1,j2,...,jk≤n
E(ηj1ηj2 · · · ηjk)

=

k∑
m=1

∑
l1 + · · ·+ lm = k,
li ≥ 1, i = 1, ...,m

m!
∑

0≤j1<...<jm≤n
E(ηl1j1 · · · η

lm
jm

)

=
k∑

m=1

∑
(l1,...,lm)∈S(k,m)

m!
∑

0≤j1<...<jm≤n
E(ηl1j1 · · · η

lm
jm

).

Using the above Lemma 2(local time distribution) and Lemma
3(Combinatorial result), we get



E|C ∩ [0, n]|k =

k∑
m=1

(
k − 1

m− 1

)
m!

∑
0≤j1<...<jm≤n

E(ηj1 · · · ηjm)

=

k∑
m=1

(
k − 1

m− 1

)
m!

∑
0≤j1<...<jm≤n

pj1pj2 · · · pjm∏m−1
s=1 D(js, js+1)D(jm)

=:

k∑
m=1

(
k − 1

m− 1

)
m!G(n,m).

What is left for us to compute is

G(n,m) :=
∑

0≤j1<...<jm≤n

pj1pj2 · · · pjm∏m−1
s=1 D(js, js+1)D(jm)

.

We need the follow estimations of D(i) and D(i, j), and another
combinatorial result.



Lemma 6

Under the conditions of Theorem 2, there exists a number i0 > 0
such that

(1− ε) i(j − i)
j

≤ D(i, j) ≤ (1 + ε)
i(j − i)

j
, j > i ≥ i0,

(1− ε)i ≤ D(i) ≤ (1 + ε)i, i ≥ i0.

Lemma 7

Fix k ≥ 1, l ≥ 1. We have

lim
n→∞

1

(log n)k

∑
l≤j1<...<jk≤n

1

j1(j2 − j1) · · · (jk − jk−1)
= 1.



With the help of Lemma 6 and Lemma 7, we can show

lim
n→∞

G(n,m)

(log n)m
=

1

2m

which leads to

lim
n→∞

E|C ∩ [0, n]|k

(log n)k
=
k!

2k
.

2
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